Characterization of La/Fe/TiO₂ and Its Photocatalytic Performance in Ammonia Nitrogen Wastewater.

نویسندگان

  • Xianping Luo
  • Chunfei Chen
  • Jing Yang
  • Junyu Wang
  • Qun Yan
  • Huquan Shi
  • Chunying Wang
چکیده

La/Fe/TiO₂ composite photocatalysts were synthesized by Sol-Gel method and well characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen-physical adsorption, and UV-Vis diffuse reflectance spectra (UV-Vis DRS). It is interesting that the doped catalysts were in anatase phase while the pure TiO₂ was in rutile phase. In addition, the composites possessed better physical chemical properties in photocatalytic activity than pure TiO₂: stronger visible-light-response ability, larger specific surface area, and more regular shape in morphology. The photodegradation results of ammonia nitrogen indicate that: the La/Fe/TiO₂ had higher catalytic activity to ammonia nitrogen waste water compared pure TiO₂ and the other single metal-doped TiO₂. pH 10 and 2 mmol/L H₂O₂ were all beneficial to the removal of ammonia nitrogen by La/Fe/TiO₂. However, the common inorganic ions of Cl(-), NO₃(-), SO₄(2-), HCO₃(-)/CO₃²(-), Na⁺, K⁺, Ca(2+) and Mg(2+) in water all inhibited the degradation of ammonia nitrogen. By balance calculation, at least 20% of ammonia nitrogen was converted to N₂ during the 64.6% removal efficiency of ammonia nitrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and Investigation of Photocatalytic Activity of transition metal-doped TiO2 Nanostructures

In this work, M-doped TiO2 nanostructures (M: Fe, Co and Ni) were synthesized by reverse microemulsion method. The as-prepared products were analyzed by different techniques such as scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The effect of various dopants (Fe, Co and Ni) on ba...

متن کامل

A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization

A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...

متن کامل

A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization

A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...

متن کامل

Recyclable Magnetic Titania Nanocomposite from Ilmenite with Enhanced Photocatalytic Activity.

Using ilmenite as a raw material, iron was converted into Fe₃O₄ magnetic fluid, which further was combined with titanium filtrate by a solvothermal method. Finally Fe₃O₄/TiO₂ nanocomposites with the uniform size of 100-200 nm were prepared. This approach uses rich, inexpensive ilmenite as a titanium and iron source, which effectively reduces the production cost. The crystal structure, chemical ...

متن کامل

Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@SiO2/TiO2) for reusing of textile wastewater

In this research we have developed a treatment method for textile wastewater by TiO2/SiO2-based magnetic nanocomposite. Textile wastewater includes a large variety of dyes and chemicals and needs treatments. This manuscript presents a facile method for removing dyes from the textile wastewater by using TiO2/SiO2-based nanocomposite (Fe3O<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of environmental research and public health

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2015